Java - Count Distinct Elements in Every Window of Size K
Problem Statement
Given an array arr[] of size N and an integer K, find the count of distinct elements in every window of size K.
Example 1:
Input: arr[] = {1, 2, 1, 3, 4, 2, 3}, K = 4
Output: [3, 4, 4, 3]
Explanation
Window [1, 2, 1, 3] → Distinct Count = 3 → {1, 2, 3}
Window [2, 1, 3, 4] → Distinct Count = 4 → {1, 2, 3, 4}
Window [1, 3, 4, 2] → Distinct Count = 4 → {1, 3, 4, 2}
Window [3, 4, 2, 3] → Distinct Count = 3 → {3, 4, 2}
Approach 1: Brute Force (O(K × N))
Traverse every window of size K.
Use a HashSet to count distinct elements.
Code Implementation
import java.util.*;
public class DistinctElementsBruteForce {
public static List<Integer> countDistinct(int[] arr, int K) {
List<Integer> result = new ArrayList<>();
for (int i = 0; i <= arr.length - K; i++) {
Set<Integer> set = new HashSet<>();
for (int j = i; j < i + K; j++) {
set.add(arr[j]); // Add elements to HashSet
}
result.add(set.size()); // Count distinct elements
}
return result;
}
public static void main(String[] args) {
int[] arr = {1, 2, 1, 3, 4, 2, 3};
int K = 4;
System.out.println(countDistinct(arr, K));
// Output: [3, 4, 4, 3]
}
}
Time Complexity Analysis
Step Complexity
Outer Loop (N-K+1 windows) O(N-K+1)
Inner Loop (Insert elements into HashSet) O(K)
Total Complexity O(K × (N-K+1)) ≈ O(NK)