-->

Java - K Largest Elements in an Array

Problem Statement

Given an array arr[] of N integers and an integer K, find the K largest elements in the array in descending order.

Example 1:

Input:  

arr = {3, 2, 1, 5, 6, 4}, K = 2  

Output: [6, 5]

Example 2:

Input:  

arr = {12, 5, 787, 1, 23}, K = 3  

Output: [787, 23, 12]

Approach 1: Sorting (O(N log N))

Sort the array in descending order.

Pick the first K elements.

Code Implementation

import java.util.Arrays;

public class KLargestElementsSorting {

    public static int[] kLargest(int[] arr, int K) {

        Arrays.sort(arr);  // Sort in ascending order

        int[] result = new int[K];

        int n = arr.length;

        // Pick the last K elements (largest elements)

        for (int i = 0; i < K; i++) {

            result[i] = arr[n - 1 - i];

        }

        return result;

    }

    public static void main(String[] args) {

        int[] arr = {3, 2, 1, 5, 6, 4};

        int K = 2;

        System.out.println(Arrays.toString(kLargest(arr, K)));  

        // Output: [6, 5]

    }

}

Complexity Analysis

Approach Time Complexity Space Complexity

Sorting O(N log N) O(1) (in-place sort)

Approach 2: Min-Heap (O(N log K)) - Efficient for Large N

Use a Min-Heap (PriorityQueue in Java) of size K.

Traverse the array:

Insert elements into the Min-Heap.

If the heap size exceeds K, remove the smallest element.

At the end, the heap contains the K largest elements.

Extract elements from the heap and sort them in descending order.

Code Implementation

import java.util.*;

public class KLargestElementsHeap {

    public static List<Integer> kLargest(int[] arr, int K) {

        PriorityQueue<Integer> minHeap = new PriorityQueue<>(); // Min-Heap

        // Step 1: Maintain min-heap of size K

        for (int num : arr) {

            minHeap.add(num);

            if (minHeap.size() > K) {

                minHeap.poll(); // Remove the smallest element

            }

        }

        // Step 2: Extract elements and sort in descending order

        List<Integer> result = new ArrayList<>(minHeap);

        result.sort(Collections.reverseOrder());     

        return result;

    }

    public static void main(String[] args) {

        int[] arr = {3, 2, 1, 5, 6, 4};

        int K = 2;

        System.out.println(kLargest(arr, K));  

        // Output: [6, 5]

    }

}

Complexity Analysis

Step Time Complexity

Building the heap O(K log K)

Processing remaining (N - K) elements O((N-K) log K)

Sorting result list O(K log K)

Total Complexity O(N log K)

✅ Best for large N when K is small.

Approach 3: QuickSelect (O(N) Average, O(N²) Worst)

This is based on the QuickSort partition method.

Use QuickSelect (similar to QuickSort).

Select a pivot and partition the array.

If the pivot position is N-K, return the last K elements.

If N-K is on the left, recurse on the left side.

Otherwise, recurse on the right side.

Code Implementation

import java.util.Arrays;

public class KLargestElementsQuickSelect {

    public static int[] kLargest(int[] arr, int K) {

        int N = arr.length;

        quickSelect(arr, 0, N - 1, N - K);  // Find K largest elements

        int[] result = Arrays.copyOfRange(arr, N - K, N);  // Extract K largest

        Arrays.sort(result);  // Sort in ascending order

        return result;

    }

    private static void quickSelect(int[] arr, int left, int right, int K) {

        if (left < right) {

            int pivotIndex = partition(arr, left, right);

            if (pivotIndex == K) return;

            else if (pivotIndex < K) quickSelect(arr, pivotIndex + 1, right, K);

            else quickSelect(arr, left, pivotIndex - 1, K);

        }

    }

    private static int partition(int[] arr, int left, int right) {

        int pivot = arr[right], i = left;

        for (int j = left; j < right; j++) {

            if (arr[j] <= pivot) {

                swap(arr, i, j);

                i++;

            }

        }

        swap(arr, i, right);

        return i;

    }

    private static void swap(int[] arr, int i, int j) {

        int temp = arr[i];

        arr[i] = arr[j];

        arr[j] = temp;

    }

    public static void main(String[] args) {

        int[] arr = {3, 2, 1, 5, 6, 4};

        int K = 2;

        System.out.println(Arrays.toString(kLargest(arr, K)));  

        // Output: [5, 6]

    }

}