-->

Python - Machine Learning Part 2: Data Preprocessing and Cleaning

Data preprocessing involves transforming raw data into a clean and usable format. This step includes handling missing values, normalizing data, and encoding categorical variables. Python libraries like Pandas and NumPy are essential for these tasks.

Examples:

Handling Missing Data

import pandas as pd

import numpy as np

# Sample data

data = {'Name': ['Alice', 'Bob', np.nan], 'Age': [25, np.nan, 22]}

df = pd.DataFrame(data)

# Fill missing values

df['Age'].fillna(df['Age'].mean(), inplace=True)

print(df)

Explanation: Missing ages are filled with the mean value, ensuring no loss of information during analysis.

Encoding Categorical Data

from sklearn.preprocessing import LabelEncoder

data = ['cat', 'dog', 'mouse', 'dog']

encoder = LabelEncoder()

encoded = encoder.fit_transform(data)

print(encoded)

Explanation: This converts categorical labels into numerical values for machine learning models.

Scaling Features

from sklearn.preprocessing import StandardScaler

import numpy as np

X = np.array([[1, 200], [2, 300], [3, 400]])

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

print(X_scaled)

Explanation: Feature scaling standardizes data, which is critical for algorithms like SVMs that rely on distance metrics.