-->

C++ - Longest Palindromic Substring

Problem Statement

Given a string s, find the longest palindromic substring in s.

Example 1:

Input: s = "babad"

Output: "aba"  // or "bab"

Example 2:

Input: s = "cbbd"

Output: "bb"

Approach 1: Dynamic Programming (O(N²) Time, O(N²) Space)

Define dp[i][j] → true if substring s[i:j] is a palindrome.

Transition:

Base case: Single-character substrings are palindromes.

Expand when s[i] == s[j]:

(if substring between is also palindrome)

dp[i][j]=dp[i+1][j−1](if substring between is also palindrome)

Track the longest palindrome found.

Code Implementation

#include <iostream>

#include <vector>

using namespace std;

string longestPalindrome(string s) {

    int n = s.size();

    if (n == 0) return "";

    vector<vector<bool>> dp(n, vector<bool>(n, false));

    int start = 0, maxLength = 1;

    // Every single character is a palindrome

    for (int i = 0; i < n; i++) dp[i][i] = true;

    // Check for two-character substrings

    for (int i = 0; i < n - 1; i++) {

        if (s[i] == s[i + 1]) {

            dp[i][i + 1] = true;

            start = i;

            maxLength = 2;

        }

    }

    // Check for substrings of length 3 or more

    for (int len = 3; len <= n; len++) {

        for (int i = 0; i <= n - len; i++) {

            int j = i + len - 1;

            if (s[i] == s[j] && dp[i + 1][j - 1]) {

                dp[i][j] = true;

                start = i;

                maxLength = len;

            }

        }

    }

    return s.substr(start, maxLength);

}

int main() {

    string s = "babad";

    cout << "Longest Palindromic Substring: " << longestPalindrome(s) << endl;

    return 0;

}

Time Complexity:

O(N²) (Nested loops).

Space Complexity:

O(N²) (DP table storage).

Approach 2: Expand Around Center (O(N²) Time, O(1) Space)

Expand outward from each character and each pair of adjacent characters.

Keep track of the longest palindrome found.

Code Implementation

#include <iostream>

using namespace std;

string expandAroundCenter(string s, int left, int right) {

    while (left >= 0 && right < s.size() && s[left] == s[right]) {

        left--;

        right++;

    }

    return s.substr(left + 1, right - left - 1);

}

string longestPalindrome(string s) {

    if (s.empty()) return ""; 

    string longest = "";

    for (int i = 0; i < s.size(); i++) {

        string oddPalindrome = expandAroundCenter(s, i, i);     // Odd-length

        string evenPalindrome = expandAroundCenter(s, i, i + 1); // Even-length

        if (oddPalindrome.size() > longest.size()) longest = oddPalindrome;

        if (evenPalindrome.size() > longest.size()) longest = evenPalindrome;

    }

    return longest;

}

int main() {

    string s = "cbbd";

    cout << "Longest Palindromic Substring: " << longestPalindrome(s) << endl;

    return 0;

}

Time Complexity:

O(N²) (Expanding for every index).

Space Complexity:

O(1) (No extra space used).

Approach 3: Manacher's Algorithm (O(N) Time, O(N) Space)

Uses a special transformation (# inserted between characters).

Efficient for large strings.

Code Implementation

#include <iostream>

#include <vector>

using namespace std;

string preprocess(string s) {

    string t = "#";

    for (char c : s) {

        t += c;

        t += "#";

    }

    return t;

}

string longestPalindrome(string s) {

    if (s.empty()) return "";   

    string t = preprocess(s);

    int n = t.size();

    vector<int> p(n, 0);

    int c = 0, r = 0, maxLen = 0, center = 0;

    for (int i = 0; i < n; i++) {

        int mirror = 2 * c - i;

        if (i < r) p[i] = min(r - i, p[mirror]);

        while (i + p[i] + 1 < n && i - p[i] - 1 >= 0 && t[i + p[i] + 1] == t[i - p[i] - 1]) {

            p[i]++;

        }

        if (i + p[i] > r) {

            c = i;

            r = i + p[i];

        }

        if (p[i] > maxLen) {

            maxLen = p[i];

            center = i;

        }

    }

    int start = (center - maxLen) / 2;

    return s.substr(start, maxLen);

}

int main() {

    string s = "babad";

    cout << "Longest Palindromic Substring: " << longestPalindrome(s) << endl;

    return 0;

}