C++ - Min Cost Climbing Stairs
Problem Statement
You are given an array cost[] where cost[i] represents the cost of stepping on the i-th stair.
You can either start from step 0 or step 1.
You can take one step or two steps at a time.
Find the minimum cost required to reach the top.
Example 1:
Input: cost = {10, 15, 20}
Output: 15
Explanation:
- Start from `step 1` (cost = `15`), then jump to the top.
- Total cost = `15`.
Example 2:
Input: cost = {1, 100, 1, 1, 1, 100, 1, 1, 100, 1}
Output: 6
Explanation:
- Start at `step 0` → `1 → 1 → 1 → 1 → 1`.
- Total cost = `6`.
Approach 1: Dynamic Programming (O(N) Time, O(N) Space)
Define dp[i] as minimum cost to reach step i.
Transition:
dp[i]=cost[i]+min(dp[i−1],dp[i−2])
The answer is min(dp[n-1], dp[n-2]).
Code Implementation
#include <iostream>
#include <vector>
using namespace std;
int minCostClimbingStairs(vector<int>& cost) {
int n = cost.size();
vector<int> dp(n + 1, 0);
for (int i = 2; i <= n; i++) {
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[n];
}
int main() {
vector<int> cost = {10, 15, 20};
cout << "Minimum Cost: " << minCostClimbingStairs(cost) << endl;
return 0;
}
Time Complexity:
O(N) (Iterate once through cost[]).
Space Complexity:
O(N) (Extra dp[] array).
Approach 2: Optimized Dynamic Programming (O(N) Time, O(1) Space)
Instead of using an array, use two variables (prev1, prev2).
Update values dynamically to reduce space usage.
Code Implementation
#include <iostream>
#include <vector>
using namespace std;
int minCostClimbingStairs(vector<int>& cost) {
int n = cost.size();
int prev1 = 0, prev2 = 0;
for (int i = 2; i <= n; i++) {
int curr = min(prev1 + cost[i - 1], prev2 + cost[i - 2]);
prev2 = prev1;
prev1 = curr;
}
return prev1;
}
int main() {
vector<int> cost = {1, 100, 1, 1, 1, 100, 1, 1, 100, 1};
cout << "Minimum Cost: " << minCostClimbingStairs(cost) << endl;
return 0;
}